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Projections of local atomic structure revealed by wavelet analysis of x-ray absorption anisotropy

P. Korecki,'** D. V. Novikov,? and M. Tolkiehn?
Unstitute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakéw, Poland
2HASYLAB at DESY, Notkestrafse 85, D-22603 Hamburg, Germany
(Received 30 January 2009; revised manuscript received 10 May 2009; published 31 July 2009)

We propose and verify in an experiment a wavelet transform approach for analysis of x-ray absorption
anisotropy (XAA) patterns recorded using a broadband polychromatic x-ray beam. XAA results from the
interference between an incident plane wave with spherical waves scattered from atoms inside the sample. This
interference modifies the total x-ray field amplitude at the sites of absorbing atoms and effectively changes the
atomic absorption cross section. XAA is monitored by measuring the secondary yield while the sample is
rotated relative to the incident-beam direction. For broadband polychromatic hard x-ray illumination, owing to
the short coherence length, significant anisotropy in absorption is only found close to directions of the incident
radiation coinciding with interatomic directions. In this work, we show that the signals from individual atoms
have the same universal shape and differ only in the scale and angular position. Combined with the directional
localization this allows us to construct a spherical wavelet family matched to the shape of the observed signal.
Application of the wavelet transform to experimental x-ray absorption anisotropy has provided high-resolution
projections of the local atomic structure in an InAs crystal up to the sixth coordination shell. While in a recent
work XAA delivered a three-dimensional image of the unit cell obtained through a tomographic algorithm, the
wavelet approach provides projections of the local structure of absorber atoms with depth resolution and does
not depend on the translational long-range order. This opens a way for a quantitative analysis of polychromatic

beam x-ray absorption anisotropy for local structure imaging.
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I. INTRODUCTION

X-ray projections have been used for over one hundred
years to reveal the internal structure of objects.! Although the
depth information is lost in a single radiograph, it is still one
of the most frequently used tools for real-space imaging of
macroscopic and microscopic objects in medicine, industry,
and science. However, obtaining an x-ray projection at the
atomic scale is cumbersome. Since the x-ray wavelength is
comparable with interatomic distances, wave phenomena are
important and x rays strongly diffract yielding an image in
the reciprocal space.

Recently, a qualitative real-space x-ray approach for im-
aging the atomic structure of solids was proposed.>> This
approach analyzes absorption anisotropy of polychromatic x
rays, which arises due to the interaction between the incident
plane wave with spherical waves scattered inside the sample
[see Figs. 1(a) and 1(b)]. The scattering geometry changes
with the relative orientation of the sample and the direction
of the incident beam, which results in variations in the total
x-ray field at the sites of absorbing atoms. The anisotropy is
monitored by measuring the secondary yield from absorbing
atoms while the sample is rotated relative to the incident-
beam direction. Such an experimental geometry is similar to
that used for x-ray absorption holography.*-8

Holographic methods employ a monochromatic beam and
collect information in reciprocal space. They use Fourier-
type reconstruction procedures for converting the measured
data to the real space.”!? These methods require that the data
are recorded over wide angular and energy ranges. If part of
the data is corrupted or missing due to experimental factors,
the reconstruction procedure will distribute the faulty data
over the entire real space, which can yield strong artifacts or
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deteriorate the spatial resolution. The missing data problem
is characteristic of all Fourier-type techniques. It also
emerges in other x-ray imaging techniques, e.g., in coherent-
diffraction imaging.'"!'> In order to avoid this problem, ho-
lographic data need to be extended to a full sphere, which
requires additional a priori information about the sample
structure!3 and is only possible for systems with very high
symmetry.

Our approach uses polychromatic x rays to record the ab-
sorption anisotropy.?> For a broadband polychromatic x-ray
beam, a decrease in the longitudinal coherence length causes
higher-order diffraction fringes to be extinguished in the
x-ray anisotropy. The zero-order diffraction spot, which co-
incides with the interatomic direction, is energy independent.
Thus, for a perfectly white beam, x-ray absorption aniso-
tropy could be explicitly interpreted as a geometrical real-
space projection of the atomic structure around absorbing
atoms. The transition from coherent holographic imaging in
the reciprocal space to the incoherent imaging in the real
space is realized by a continuous increase in the bandwidth
of the incident x rays. Therefore, there is no well defined and
sharp distinction between the two methods. In a realistic case
of a broadband polychromatic x-ray beam, the finite width of
the spectrum will produce remnant diffraction fringes [see
Fig. 1(c)], which need to be taken into account in the evalu-
ation procedures. However, the signals of individual scatter-
ers strongly localize around interatomic directions and a real-
space interpretation is more illustrative.

After the first demonstration of the real-space approach, a
tomographic algorithm for x-ray absorption pattern analysis
has been proposed.’ It analyzes the intensity of bands, cor-
responding to projections of atomic planes, that are formed
due to the superposition of signals from a large number of
periodically arranged scatterers as shown in Fig. 1(d). This
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FIG. 1. (Color online) X-ray absorption anisotropy for polychro-
matic illumination. (a) Interaction between the incident plane wave
with spherical waves scattered inside the sample modifies the total
x-ray field at the sites of absorbing atoms, which results in aniso-
tropic absorption. (b) Absorption is probed by collecting the sec-
ondary yield while the sample is rotated relative to the incident-
beam direction. (c) For a broadband polychromatic illumination,
due to a short longitudinal coherence length, the signal of a single
scatterer is localized around the interatomic direction. (d) For a
periodic sample, the superposition of signals from individual atoms
gives rise to a pattern consisting of intensity bands, which can be
quantitatively interpreted as projections of the atomic planes. The
proposed wavelet approach permits us to detect signals from single
atoms, belonging to the local structure of absorbing atoms, in the
complex pattern shown in (d). The remnant diffraction fringes vis-
ible in (c) make it possible to obtain partial depth information.

technique is capable of determining three-dimensional (3D)
crystal structures, however, similar to other recently pro-
posed methods,'*!3 is insensitive to the geometric arrange-
ment of atoms in the local structure.

In principle, x-ray holographic methods’ allow for a full
three-dimensional imaging of the averaged local structure
around absorbing atoms. However, for monochromatic illu-
mination, x-ray absorption patterns can be obscured by the
so-called extinction effects resulting from multiple scattering
in the crystal. An in-depth analysis of this effect was pre-
sented in Ref. 16. It was shown that the extinction-induced
artifacts can interfere with the correct images at the atomic
positions in the holographic reconstructions. Extinction ef-
fects are minimized when a hard x-ray polychromatic radia-
tion is used to record absorption anisotropy. This is mainly
due to the combination of two effects. First, the escape depth
of the secondary radiation is in most cases negligible com-
pared to the absorption and extinction lengths of the incident
hard x-ray radiation. Second, for polychromatic hard x rays
the scattering takes place in the forward-scattering geometry
for which extinction does not influence the secondary yield
significantly.'® Experimentally the absence of the extinction
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effects for polychromatic radiation was demonstrated in Ref.
17.

In this paper, we propose a quantitative wavelet transform
approach for imaging of the local atomic structure. Contrary
to sine and cosine functions, which are used in Fourier trans-
forms, wavelets are well suited for analysis of localized
variations in the signal and allow to analyze data at different
scales.!® AlIl wavelets can be generated from a so-called
“mother” wavelet by scaling, translations, or rotations and
therefore have the same universal shape. A particular form of
the mother wavelet can be adopted for a specific application.
In most applications wavelets are oscillatory functions well
localized in the real space. The wavelet transform corre-
sponds to a decomposition of the analyzed signal into wave-
lets, which can be described as a generalized correlation be-
tween the signal and the scaled and translated wavelets.

We show, that for a broadband polychromatic illumina-
tion, the x-ray absorption anisotropy pattern can be described
as a simple linear superposition of wavelet-like functions,
each corresponding to a single scatterer. Therefore, the wave-
let transform is a natural and an optimal method of analyzing
the x-ray absorption anisotropy patterns recorded for poly-
chromatic x rays and imaging of local atomic structure.

The paper is organized as follows. In Sec. II, we show
that for a broadband polychromatic x-ray illumination the
signals of individual scatterers are localized around inter-
atomic directions. This allows us to use the small-angle ap-
proximation and show that all atomic signals have the same
universal shape. In, Sec. III we construct a spherical wavelet
family, that is, matched to the x-ray absorption anisotropy
signals. We demonstrate that there is a direct relationship
between the interatomic distance and the wavelet scale,
which leads to a depth resolution in reconstructed images. In
Sec. IV we demonstrate application of the wavelet filter to
x-ray absorption anisotropy data recorded for an InAs crys-
tal. We show that the wavelet filter is capable of providing
high-resolution local atomic-structure projections. By chang-
ing a single parameter of this filter one is able to obtain
projections at different depths. Section V contains conclu-
sions and the appendices present supporting general informa-
tion about the properties of the two-dimensional and the
spherical continuous wavelet transforms.

II. X-RAY ABSORPTION ANISOTROPY

A. Arbitrary hard x-ray broadband spectrum

For monochromatic x rays, the absorption anisotropy can
be written as

(k) = ()1 + xo(K)], (1)

where Kk is antiparallel'® to the wave vector of the incident
radiation and p, is the absorption coefficient of an isolated
atom.?® Since x-ray absorption anisotropy x,(K) arises from
coherent interaction of the incident plane wave exp(—ik-r)
with spherical waves exp(ikr)/r scattered inside the sample,
it can be written as?!

014119-2



PROJECTIONS OF LOCAL ATOMIC STRUCTURE...

ikr
Xo(K) ==2r, Ref p(r)e—e_ik'rdSI”, (2)

R3 r

where r, is Thomson scattering length and p(r) is the real-
valued electron charge distribution inside the sample at po-
sition r relative to absorbing atom. Generalization of Eq. (2)
to multiple positions of absorbing atoms is described in Ref.
16.

For polychromatic x rays the absorption anisotropy be-
comes

x(k) = f N(k) xo(K)dk, (3)
0

where k=k/k and N(k) is the normalized effective wave-
vector spectrum sensed by the absorbing atoms, which is
determined by the spectrum of the incident beam and
mak)."

If the dispersion corrections are negligible, insertion of
Eq. (2) into Eq. (3) gives

)((12) =— 2ref &:)h(b‘, rdr. (4)
]R3

The signal i(9,r) is due to a single electron placed at posi-
tion r relative to absorbing atom and it is defined as

oo

h(9,r) =Re f N(k)e™*dk, (5)

where
t=1-cos ¥ (6)

and ﬂ:arccos(ﬁ-f). For any realistic energy spectrum,
N(k)=0 for k<0 and the semi-infinite integral limits in Eq.
(3) can be replaced by infinite limits in Eq. (5).

An x-ray absorption experiment requires a reasonably
smooth, unimodal, and broadband N(k) spectrum. Let &, be
some value characteristic of spectrum N(k), for example, its
median, mean, or mode. Thus, N(k+k,) describes this spec-
trum centered at zero. Using this shifted wave-vector spec-
trum, the signal A(¥,r) can be written as

h(9,r) =Re[e®n(rr)], (7)
where
n(x) = N2 FN(k + ko) Hx) (8)

and the symbol F denotes a Fourier transform, which is de-
fined as

o

FIN()}x) = % N(k)e™dk. 9)

N J —o

The envelope of h(9,r) is equal to |n(rt)|. Since, for a
broadband N(k) spectrum, |n(rt)| is well localized around
zero, without loss of generality, one can use the small-angle
approximation
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FIG. 2. (Color online) X-ray absorption anisotropy signal /(%)
calculated for a Lorentzian spectrum N(k) with B=Ak/(2ky)=1/4
(solid line). The dotted curve shows the small difference between
signal calculated with and without changing the integration limits in
Eq. (5). For comparison, the dashed line shows a wavelet having
zero mean, which is discussed in Sec. III. The net anisotropy y can
be calculated as a simple superposition of functions # multiplied by
—2r,/r factors.

1
t=1-cos 0%5192 (10)

and write A(9,r) as

h(ﬁ,r):Re[exp(ikogﬂz)n(%ﬂ. (11)

Within the small-angle approximations, the functions
h(9,r) are similar, i.e., they have exactly the same shape for
all r. The position of the signal on the sphere is determined
by f while the scale of & is determined by r.

B. Lorentzian spectrum

In this work, the spectrum N(k) will be assumed to be a
Lorentzian curve centered on ky with a full width at half
maximum equal to Ak,

1 Ak
MO = e =k + (A2 (12

for which it is useful to define an auxiliary quantity

= % (13)
2k
In principle, this assumption is incompatible with the infinite
integration limits in Eq. (5). However for small values of 8
this does not lead to any significant loss of precision (see
Fig. 2). For such a spectrum, Eq. (8) becomes

n(x) — e—l/2Ak\x| (14)
and the signal & is approximately equal to
h(9,r) = e cos(q ), (15)

where g=kyr/2. The signal h, calculated for S=1/4 is plot-
ted in Fig. 2. Figure 3 exemplifies the basic properties of
x-ray anisotropy for a broadband N(k) spectrum: localization
of individual signals around interatomic directions and their
scaling properties.
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FIG. 3. (Color online) Properties of the absorption anisotropy
for polychromatic x rays: localization around interatomic directions
and similarity of signals from scatterers at different positions. (a)
Surface plot of signals i(6,r) produced by scatterers placed at dif-
ferent positions relative to the absorbing atom. The geometrical
arrangement of scatterers is shown in the central part of the plot. All
signals have the same shape and are localized around directions
connecting a scatterer and an absorber. (b) Polar plot of the same
signal calculated at the position depicted by a dashed line in (a).
The calculation was performed for k=50 A‘l, B=1/4, and for in-
teratomic distances r=(2,8,16,32) A. In order to facilitate a direct
comparison of the shape of the signals for different r, we did not
take into account the —2r,/r prefactor responsible for the radial
decay of the amplitude.

III. CONTINUOUS WAVELET TRANSFORM

A. Spherical wavelet transform in small-angle approximation

Localized and similar functions from Egs. (11) and (15)
are analogous to wavelets. The continuous wavelet transform
is extensively used in signal and image processing.?>?} In
particular, it has been used in optics’»* and x-ray
spectroscopy?® for analyzing signals at different scales. For a
brief description of the continuous two-dimensional and
spherical wavelet transforms see Appendices A and B, re-
spectively.

The continuous spherical wavelet transform, for isotropic
wavelets, is defined as a generalized correlation between the
analyzed signal and the scaled and rotated wavelets 1/420,5,27
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x(Ko,5) = J Wiy (X (K)AQ, (16)
N

where s>0 is the scale parameter and 120 determines the
position of the wavelet on the sphere. The large scales cor-
respond to the slowly varying components of the signal,
whereas the smaller scales correspond to finer details. All of
the wavelets 1/4;0,5 can be obtained from a mother wavelet ¢/
through scaling and rotation. In our approach, the mother
wavelet is real valued, localized around the north pole, and

isotropic: ¢(K)=yA6), where 6 is the polar angle. The small-
angle approximation causes the spherical wavelet transform
to become locally equivalent to a two-dimensional wavelet
transform.?® The mother wavelet is chosen in such a way that
for scales s=1, the scaling operation can be defined via a
strict analogy with the two-dimensional case

wo="of ) (1)

The shape of the mother wavelet can be adopted for a spe-
cific application. The only requirement is that this wavelet
meets so-called admissibility condition. For highly localized
isotropic spherical wavelets, this condition reduces to a two-
dimensional zero-mean condition

fw (60)0d0=0. (18)

0

This criterion, together with localization, implies that a
wavelet is an oscillating function. Although the functions in
Eq. (15) are localized, similar, and oscillatory, they are not
perfectly admissible.

Admissibility can be achieved by adding a small correc-
tion term to A(J,r). We introduce a wavelet family defined
as

() = %e-ﬁqoﬁz/sz{cos<qg—26‘2) -B sin(qz—fz)} , (19)

where gy=kyro/2 and the parameter r, is chosen to ensure
the validity of the small-angle approximation for a scale pa-
rameters s=< 1. For 8=0, the proposed wavelet i,(1}) is per-
fectly matched to the signal h(19,r) for scale parameter

s=(rlrg)™"2. (20)
The wavelet ¢,(6) is compared to the signal 4(J,r) in Fig. 2.

B. Wavelet filter

Since the wavelets from Eq. (19) are well matched to the
signals of individual scatterers, the wavelet transform coeffi-
cients will be at a maximum if the wavelet’s scale and direc-
tion coincide with the position of one of the scatterers. Our
simulations show, that the direct use of the transform from
Eq. (16) for analyzing absorption anisotropy can be success-
fully applied to systems consisting of only a few scatterers.
For larger systems, it will produce artifacts similar to those
observed in single-energy x-ray holography.?’

Therefore, further analysis is based on the invertibility of
the wavelet transform and the real-space interpretation of the
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absorption anisotropy Y. The admissibility criterion guaran-
tees that the wavelet transform is invertible, i.e., that the
original signal can be reconstructed from a full set of wavelet
coefficients. Consider a filtered linear inversion scheme of

the wavelet transform,?>%3
R “ ds
Uk)=C, . X(k,S)W(S)? (1)
in which the extra window function w(s) is defined as
1 if s, <s=1
w(s) = (22)
0 elsewhere

and Cy is a constant that only depends on the shape of the
wavelet . For wavelets defined in Eq. (19)

Cy,= 2koro/ (7 — 277 arctan ). (23)

Since the integral in Eq. (21) only takes into account a finite
range of scales, the function U(ﬁ) corresponds to a filtered

version of y(K). The upper limit for the scale parameter is set
at s=1 to ensure the small-angle approximation, whereas the
introduction of a cutoff scale s. will remove fine details from
the pattern, thereby reducing contributions from distant scat-
terers. The wavelets 1,/1120,X are nonorthogonal and this filter is
not perfect, causing the cutoff scale to be fuzzy rather then
sharp. The cutoff scale s, and cutoff distance r, are related by

Se= (rc/rO)_l/2~ (24)

The application of the wavelet filter from Eq. (21) to cal-
culated data is demonstrated in Fig. 4. The filter was applied
to the simple signal from Fig. 3. Application of the wavelet
filter to such a simple test pattern does not provide any new
information. However, in the next section we will apply the
wavelet filter to a pattern recorded for an almost-perfect
crystal. For a crystal, the superposition of signals from peri-
odically arranged atoms masks the signals coming from the
nearest atoms. We will show that the wavelet filter allows
one to suppress the contribution from distant atoms and to
reveal projections of the local structure around absorbing at-
oms.

IV. ANALYSIS OF X-RAY ABSORPTION ANISOTROPY
RECORDED FOR InAs(001) CRYSTAL

A. Experiment and data analysis

In this section, we apply the proposed wavelet formalism
to the x-ray absorption anisotropy data recorded for an InAs
crystal with a (001) orientation. InAs has the zinc-blende

structure (space group F43m) and the lattice constant a
=6.0583 A. The x-ray absorption anisotropy pattern was
measured at HASYLAB on the beamline C1. In order to
obtain a broadband spectrum N(k), the beam from a bending
magnet passed through a 15-mm-thick Al absorber and was
limited by slits to a size of 0.3 X0.3 mm?. The beam inten-
sity was monitored using a Si photodiode placed directly in
the beam path. The sample absorption was probed by mea-
suring the total electron yield with a compact gas-filled de-
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FIG. 4. (Color online) The wavelet filter applied to the data from
Fig. 3. (a) Surface plot. (b) Polar plot. The dashed line shows the
original signal. The cutoff distance . was set to 10 A whereas the
parameter o was set to 1 A. While the signals from the distant
scatterers are strongly suppressed, the forward-scattering features of
near scatterers are still intense and can be used for a real-space
determination of their positions. The change in the cutoff scale of
the wavelet filter allows for a depth resolution.

tector operating in a current mode. The sample was rotated
around two axes relative to the direction of the incident
beam. The total acquisition time was ~24 h. The details of
the experimental setup are described in Ref. 17. The absorp-
tion anisotropy was obtained from raw data by background
subtraction and using symmetrization operations from the

F43m space group. The background was subtracted sepa-
rately for each azimuthal scan using smoothing splines.*°
Since a direct measurement of the effective spectrum N(k)
is cumbersome, the most important parameters of this spec-
trum were obtained directly from the experimental pattern.
Figure 5(a) shows a profile of the x-ray absorption aniso-
tropy recorded in the vicinity of an intensity band corre-

sponding to the projection of the (111) plane. The param-
eters of the Lorentzian N(k) spectrum were obtained from
this data by a fit of a theoretical curve, according to the
formalism introduced in Ref. 17. The parameters obtained in
such a procedure, ky=(22.2+0.3) A~'(E,~44.4 keV) and
Ak=(10.7%2.1) A"((AE=21.4 keV), were used to con-
struct the wavelet family and for simulation of the x-ray
absorption pattern. In order to estimate the deviation of the
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FIG. 5. (Color online) Determination of the parameters of the
effective spectrum N(k). (a) A profile of the recorded x-ray absorp-
tion anisotropy in the vicinity of an intensity band corresponding to
the projection of the (111) plane (points). The parameters of the
Lorentzian N(k) spectrum were obtained by a fit of a theoretical
curve (solid line). (b) The Lorentzian spectrum N(k) calculated for
parameters obtained from fit (a) is shown as a solid line. The dash-
dot line shows the spectrum calculated using known parameters of
the beamline and sample.

Lorentzian spectrum from the experimental one, we also in-
dependently calculated the spectrum N(k) using the synchro-
tron source emission characteristics, transmission of all ele-
ments placed in the beam and the energy dependence of the
absorption in the sample. The calculated spectrum is com-
pared to the Lorentzian spectrum in Fig. 5(b). Though the
agreement is not perfect, such precision is sufficient for a
quantitative analysis, as will be shown in the next subsection
by a comparison between recorded and simulated data.

The x-ray projections were obtained from x-ray aniso-
tropy data using the fast spherical wavelet transform proce-
dure in the YAW toolbox?”3! in the MATLAB computing en-

vironment. Since U(K) is a filtered projection of —p(r) <0, it
is convenient to present data using a modified function Uo(ﬁ)

that is equal to U(ﬁ) for negative values and zero otherwise.
To ensure that the small-angle approximation is valid, r, was
set to 2 A while the cutoff distance r., defined in Eq. (24),
was varied to obtain depth information.

B. Results and discussion

Figure 6(a) shows the x-ray absorption anisotropy pattern
recorded for our InAs sample. The most visible features are
bands corresponding to the projections of atomic planes. For
comparison, Fig. 6(b) shows x-ray anisotropy calculated us-
ing the formalism described in Ref. 17. For the calculation
input, we only used two nonstructural parameters k, and Ak
of the Lorenztian-shaped N(k) spectrum, which were directly
obtained from the experimental data. The calculation as-
sumes ~1/4 ratio of As-to-In absorption. Thus, this pattern
is a linear combination of patterns corresponding to In and
As absorbing atoms. Apart from the contrast, the agreement
between theory and experiment is excellent. This confirms
the real-space character of the x-ray absorption anisotropy
patterns and the lack of so-called extinction effects. The de-
crease in the contrast of the experimental pattern is due to the
detector background signal and the presence of a thin amor-
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(a) experiment

FIG. 6. (Color online) X-ray absorption anisotropy signals for
an InAs(001) crystal. (a) Experimental data. (b) Data calculated
using kinematical theory for: ky=22.2 A~' (E,~44.4 keV) and
Ak=10.7 A~' (AE=~21.4 keV). The patterns are presented as fish-
eye projections of the complete hemisphere. Part of the data where
the background subtraction was ambiguous was set to zero.

phous layer at the sample surface which does not contribute
to the anisotropy.

The wavelet analysis of the experimental data is demon-
strated in Fig. 7. X-ray projection of the local structure in
InAs, obtained with a wavelet filter from the experimental
x-ray absorption anisotropy pattern is shown in Fig. 7(b). For
comparison, Fig. 7(a) presents a geometrical fish-eye view of
a small InAs cluster. The fish-eye image was calculated with
a ray-tracing software (POV-RAY) for a small cluster (30 A
radius) of spheres, arranged in the InAs structure, using the
principles of geometrical optics. The observation point was
placed at the position of the central In atom and a fish-eye
perspective was used. In the resulting image, In and As at-
oms are shown as dark and bright spheres, respectively.
Their dimensions are proportional to the atomic number and
inversely proportional to the distance from the central atom.
For clarity, atoms at distances larger than 10 A are shown
with decreased intensity. Exactly the same fish-eye projec-
tion (x=6cos ¢ and y=6sin ¢) was used for the presenta-
tion of the experimental x-ray angular maps.

In addition, Fig. 7(c) shows the result of the wavelet filter
applied to the pattern calculated for a small InAs cluster with
a radius of 10 A. The atoms included in this calculation are
shown with enhanced intensity in panel (a). The data calcu-
lated in (c) correspond to a weighted linear superposition of
the projections around the In and As atoms. From the view
point of an As atom, the fish-eye view from (a) is rotated by
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FIG. 7. (Color online) Projections of the local structure in InAs.
(a) Fish-eye view of a small InAs cluster (observation point is
placed at an In atom site). The sizes of the balls are proportional to
the atomic number and inversely proportional to the distance from
the central atom. The oval shapes mark the strongest scatterers. The
labels correspond to coordination shell number. (b) Experimental
x-ray projection U, obtained from the data shown in Fig. 6(a) using
a wavelet filter. The areas, where the edge effects are important,
were set to zero. (¢) X-ray projection U, obtained from the pattern
calculated for a small InAs cluster with 10 A radius. The angular
and intensity scales are identical to those in Fig. 6.

90° and the positions of In and As are interchanged.

The x-ray projections obtained from the experimental and
calculated data are in excellent agreement. A comparison of
the experimental data with the fish-eye view indicates that
the projections of nearest neighbors and next nearest neigh-
bors are clearly resolved. More distant atoms are still visible
but their projections overlap due to a finite angular reso-
lution. The size of atomic projections decreases with their
distance from the central atoms, similarly as in the fish-eye
view. Remarkably, the nonspherical shape of the atomic pro-
jections has a clear real-space interpretation. This shape is
connected to the local environments of scattering atoms. The
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FIG. 8. (Color online) Beyond projection imaging: depth reso-
lution. Experimental x-ray projections U, obtained using a wavelet
filter for different cutoff distances (a) r.=5 A and (b) r.=20 A.In
(a) the most intense spots correspond to the projections of nearest
neighbors. In Fig. 7(b), the spots of nearest neighbors and next
nearest neighbors have comparable intensities. In (b), the spots cor-
responding to more distant atoms become stronger.

sensitivity of the method to the local structure is exemplified
by different intensities at the spots labeled 1 and 7. The cor-

responding crystal directions [111] and [111] have the same
linear electron density. Thus, the visible difference is due to
the different distances to nearest atoms lying on these direc-
tions. Due to the ability of the wavelet transform to analyze
localized variation in the signal, the missing data in the pat-
tern did not influence the projections of the local structure.

For a constant value r,. of the wavelet filter, the visibility
of atomic images is mainly noise limited. The x-ray aniso-
tropy images allow us to observe the projections of indi-
vidual In atoms (Z=49) up to the sixth coordination sphere
(r=7.49 A) and As atoms (Z=33) up to the third coordina-
tion sphere (r=5.02 A). For both cases, the ratio 27Zr,/r is
approximately equal to 3.7 X 107, This number, which can
be directly related to the observed anisotropy, can be taken as
a quantitative measure of the achieved sensitivity.

Figure 8 demonstrates another benefit of using the wave-
let formalism for analyzing absorption anisotropy: by chang-
ing the cutoff distance r, of the wavelet filter, one can obtain
depth information. Although the radial resolution is sufficient
for assigning nearby atoms to coordination spheres, it is in-
sufficient for detecting small changes in the interatomic dis-
tances.

C. Resolution and the choice of the effective N(k) spectrum

In this subsection we present a short discussion concern-
ing the resolution and the proper choice of the effective spec-
trum N(k) for future applications. For a Lorentzian spectrum
N(k), the angular resolution can be related to the width of the
central maximum of the function 4 from Eq. (15), or more
precisely to the angular distance between its first zeros

A= 2m/(kor). (25)

In practice, the increase in k, can be realized by increasing
the thickness of an absorber placed in the x-ray beam, which
shifts the spectrum toward higher k values.
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The wavelet analysis is only possible for highly localized
signals, i.e., when the small-angle condition from Eq. (10) is
fulfilled. The localization of the signals around interatomic
directions is determined by the ratio Akr, which determines
the shape of the envelope of the signal 4. For example, for
Akr=25, the envelope of the signal drops to 1/e? of its maxi-
mum value at an angle ~33°, where the small-angle approxi-
mation of Eq. (10) has a relative error in the range of 3%.
Thus, for the nearest-neighbor distance r=2.5 A, the band-
width should be Ak=10 A" (or equivalently AE
=20 keV).

The localization of the signal around interatomic direction
is accompanied by the smearing of the higher-order diffrac-
tion fringes. This deteriorates the resolution along radial di-
rection. The radial resolution, calculated by a direct insertion
of Egs. (15) and (19) into Eq. (16) can be approximated as>?

Ar=4rp, (26)

where the parameter B was defined in Eq. (13). This value
determines the sharpness of the cutoff value r, of the wavelet
filter. Thus, images of atoms located at r=<r.—2rB are
weakly influenced by the filter, whereas the intensities of
more distant images, apart from the obvious 1/r factor, are
strongly suppressed.

The presented method requires a reasonably smooth en-
ergy spectrum. Any absorption edge present at an energy
where the spectrum N(k) has significant values, will produce
a discontinuity in the effective energy spectrum and, via Fou-
rier transform, will strongly influence the shape of 4 function
[c.f. Egs. (7) and (8)]. Thus, there exists an upper limit for
absorption edges energy of elements inside the sample. Since
a realistic spectrum usually has a positive skewness and
drops quite rapidly to zero at the lower-energy side [see. Fig.
5 and Refs. 2 and 17], it is sufficient if the highest absorption
edge is lower than E,—AE/2. For example, for an effective
spectrum with E,=50 keV and AE;=25 keV, all absorption
edges should be at energies E£,=<37.5 keV. In addition, this
condition ensures that the dispersion corrections, which are
significant near absorption edges, are negligible.

Concluding, the increase in Ak improves the radial reso-
lution but simultaneously worsens the accuracy of the small-
angle approximation. Thus, a value between Ak=5 A~! and
Ak=15 A! (10 and 30 keV) seems to be a reasonable
choice. For a constant Ak, the increase in k, improves both
the radial and angular resolutions and makes it possible to
study samples containing elements with higher atomic num-
ber.

V. CONCLUSIONS

In summary, we have shown that for a broadband poly-
chromatic illumination x-ray absorption anisotropy can be
calculated as a linear superposition of localized wavelet-like
signals corresponding to individual scatterers. The wavelet
transform is the natural method for analyzing such data and
allows to obtain a direct information about the local structure
of absorbing atoms. Its application to experimental data al-
lowed to obtain high-resolution projections of the local struc-
ture at different depths. The depth or radial resolution is lim-
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ited as compared to other methods,”* however this

limitation is compensated by the robust character of the real-
space approach, which overcomes the inherent problems of
x-ray holography associated with long-range order and
multiple-scattering effects.!®? In addition, the localized
character of wavelets makes the method insensitive to miss-
ing data.

In this paper, we applied the wavelet formalism for imag-
ing the local atomic structure from x-ray absorption aniso-
tropy, which was recorded for an almost-perfect crystal. As
far as the imaging of local structure is concerned, the pres-
ence of a perfect long-range order is a problem rather than an
advantage. The approach should also work for nonperfect
crystals, thin films, and buried layers. The presented method
provides information that is complementary to x-ray absorp-
tion fine structure, which is a powerful tool for the determi-
nation of local interatomic distances. However, in order to
efficiently apply the proposed method to chemically resolved
x-ray imaging, there must be experimental progress made on
the detection of characteristic radiation.

The wavelet approach could also be applied to the analy-
sis of neutron holograms® recorded with polyenergetic
beams. Further research will determine if the wavelet tech-
nique, despite multiple scattering, is capable of analyzing
electron-diffraction data,>*-37 e.g., filtering out images of in-
dividual atomic strings® observed in simulated electron-
diffraction patterns.
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APPENDIX A: TWO-DIMENSIONAL WAVELETS

A two-dimensional function #(x) can be called a wavelet
if it satisfied the so-called admissibility condition. For
square-integrable functions, this condition reduces to a zero-
mean condition, 223

W(x)d’x = 0. (A1)

Rr2

From a wavelet ¢ one generates shifted, rotated, and scaled
wavelets. In this work we discuss isotropic real-valued wave-
lets. In this case only shifted and scaled wavelets are gener-
ated,

lﬁxO,S(X) = llﬁ( = XO) .
S S

The continuous wavelet transform of a function f(x) is de-
fined as

(A2)

Fx0.5) = f Yy s (F(R) . (A3)
Rr2

The wavelet coefficient f(xo,s) is a measure of the correla-
tion of the analyzed function f(x) with the wavelet (//XO,S(X).
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This correlation is calculated at different scales. Usually, the
wavelet transform is applied to discrete data. The term con-
tinuous means that both the scale parameter s and the trans-
lation parameter X, are changing continuously.

The admissibility condition ensures that there exists an
inverse transform. Since lﬂxoys(X) are nonorthogonal the infor-

mation contained in the wavelet coefficients f(xo,s) is redun-
dant. However, because of this redundancy, there is more
than one reconstruction formula. For example, a simple inte-
gral over wavelength scales

*_ d
fx=c, f f(x,s>s—§ (A4)
0

reconstructs the original signal. The constant C, depends
only on the shape of the mother wavelet .

APPENDIX B: GENUINE SPHERICAL WAVELET
TRANSFORM

Extension of the wavelet transform to a spherical surface
is nontrivial. Since the sphere is compact, scaling is difficult
to define. An elegant solution for constructing wavelets on a
sphere is based on the stereographic projection, which maps
the sphere onto the tangent plane at the north pole.”’2% A

point K on the sphere S2, having spherical coordinates (6, ¢),
is projected onto a point in the tangential plane with polar
coordinates [(6), @], where ¢(6)=2 tan(#/2). This projec-
tion induces a unitary mapping I1 of square-integrable func-
tions on the sphere to square-integrable functions on R? de-
fined by

2\ -1
H¢(p,¢)=(l+%) ¢(2 arctanlz—),¢). (B1)

By means of II, one defines the admissibility condition on
the sphere: the wavelet (6, ¢) is admissible, if I1¢ fulfills
the admissibility condition Eq. (Al). Thus, for isotropic

wavelets ¥(K)=y/(6), the admissibility condition reads

PHYSICAL REVIEW B 80, 014119 (2009)

| o

Since IT can be inverted, the scaling of spherical wavelets
can be done by first projecting the wavelet to the plane,
scaling the planar wavelet and then back projecting the
scaled wavelet: i, =IT1""[(TT¢),].

Thus, for spherical wavelets, the scaling operation is de-
fined as

s1n(0)
1+ cos(6) 40=0. (B2)

,(0) = N(0,9)"* (), (B3)
where tan(6,/2)=s"" tan(6/2) and the prefactor
4 2
N6.5) = - (B4)

(s> =1)cos O+s*+1

assures conservation of the L? norm.
The motion of the wavelets is accomplished by a direct
rotation on the sphere. Rotation of the mother wavelet from

the north pole to a point Ky=(6y, ¢,) is implemented by the
inverse rotation R"(lEO) acting on the spherical coordinates

Uiy oK) = Y[R (K], (BS)

where the rotation matrix R(ﬁo) is defined as: R(EO)
=R;(¢)Ry(6). Now, the continuous spherical wavelet trans-
form can be defined accordingly to Eq. (16).

In this work, we use the small-angle approximation for
the adaptation of the spherical wavelet transform to analyze
x-ray absorption anisotropy. Therefore, all expressions are
approximated up to second order of 6. This corresponds to an
approximation of Eq. (10). The angular factor of the admis-
sibility condition of Eq. (B2) is approximated as sin 6/(1
+cos 0)= 6/2. Similarly, the factor present in the spherical
correlation of function f(ﬁ) with scaled wavelets from Eq.
(16) is approximated as A\(6,s)"’sin 6=~ 6/s and tan(6/2)
=~ @/2. In such an approximation, the admissibility criterion
for isotropic and localized wavelets is given by Eq. (18), and,
for sufficiently small scales, the scaling operation reduces to
Eq. (17).
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